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Business and Activity Section 
 

(a) Contract Activity  

 

No contract modification was made or proposed in this quarterly period. No materials were 

purchased during this quarterly period. 

 

(b) Status Update of Past Quarter Activities  

 

In this reporting period, the research team performed comprehensive literature review, and made 

progress toward achieving the technical objectives including: 

 

(1) Starting the work on the development of CNN-based deep learning for low-variance 

interacting threats characterization (Task 3.1). 

(2) Completed the work on spatiotemporal interacting threat modeling by graphs (Task 4.1). 

In this reporting period, the research team made progress on educational activities, including 

involving three PhD students and several unpaid master and undergraduate students at Mines and 

MSU, and adapting the research topics from this project with undergraduate research programs 

(e.g., the Mines Undergraduate Research Honor Thesis) and MSU (e.g., ENSURE program).  

 

(c) Cost Share Activity 

 

PI Zhang used his 11.29% yearly effort as the in-kind cost share to work on the project at the 

Colorado School of Mines. Co-PI Yiming Deng used his 6.07% yearly effort as the in-kind cost 
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share to work on the project at the Michigan State University. The cost share was used following 

the approved proposal and no modification was made. 

 

1. Progress on Task 3.1: CNN-based deep learning for low-variance interacting threats 

characterization 

 

1.1. Simulation Environment Specification 

 

The goal of current simulation is to establish the link between multi-NDE sensing measurements 

and defect profile, which will help us to develop probabilistic models of failure pressure of a 

pipeline containing defects, achieving predictions that are unbiased with reduced variability. 

Numerical data (i.e., FE analysis results) in our study should also be well managed as well as 

specifying simulation environment to be better compared with future experimental results. MFL 

and PEC probe specifications are listed as follows: 

 

Table 1: MFL simulation specification 

 

Magnetic source specification Value 

MUT is magnetized by permanent magnets such as NdFeB  Select 

MUT is magnetized by a ferrite core with a N-turn coils   

Residual magnetism  50000 A/m on z direction 

Coercive force   

Lift-off value  3 [mm] 

Length of yoke  320 [mm] 

Thickness of yoke  30 [mm] 

Width of yoke  30 [mm] 

Length of brush  30 [mm] 

Thickness of brush  20 [mm] 

Width of brush  30 [mm] 

Length of magnets  30 [mm] 

Width of magnets  30 [mm] 

Thickness of magnets  20 [mm] 

 

Table 2: PEC simulation specification 

 

Quantity Value  

Thickness of PEC coils  2 [mm] 

Length of excitation coil  25 [mm] 

Width of excitation coil  25 [mm] 

Length of pick-up coils   22 [mm] 
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Width of pick-up coils  22 [mm] 

Lift -off value   3 [mm] 

Excitation coil turns   100  

Pick -up coil turns  300   

Type of core material  Copper  

Presence of shield  No  

Excitation current density Supplied by a pulsed 

voltage source 

Duration of rising edge  0.2 [μ 𝑠] 

Pulse width  2.5 [μ 𝑠] 

Amplitude of the excitation current/voltage  Voltage of 10[V] 

Durations of Falling edge  0.2 [μ 𝑠] 

 

Table 3: Data form of PEC results 

 

Densities and distribution patterns of induced eddy currents In matrix form  

Readings from pick-up coil Vector 

Amplitude of the rising peak of differential induced voltage Scalar 

Time-to-peak Scalar 

 

Table 4: Data form of MFL results 

 

Leakage flux density on 𝑥,  𝑦, 𝑧 direction measured by 

magnetic field sensor 

  

𝐵𝑥 In matrix form 

𝐵𝑦 In matrix form 

𝐵𝑧 In matrix form 

Differential form (for artificial defect)   

∆𝐵𝑥  In matrix form 

∆𝐵𝑦  In matrix form 

∆𝐵𝑧  In matrix form 

 

 

1.2. Simulation Data Management 

 

In this report, design of location arrangement for multi-defect data is illustrated.  
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The demonstrated approach can be efficiently applied to generating simulated measurements on 

a larger domain with multiple interacting threats.  

 

 

 
 

Figure 1: Multiple defect location arrangement 

 

 
 

 

 
 

Table 5: Location of predefined defects  

 

𝐴1  (-94.25,40) 

𝐴2  (-31.75,40) 

𝐵1  (31.75,40) 

𝐵2  (94.25,40) 

𝐶1  (-94.25, -40) 

𝐶2  (-31.75, -40) 

𝐷1  (31.75, -40) 

𝐷2  (94.25, -40) 

 

 

𝐴1 𝐴2 𝐵1 𝐵2 

𝐷1 𝐷2 𝐶2 𝐶1 

Figure 2: Predefined defects selection scheme based on section A, B, C 

and D segmentation 
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Combination 𝐴 𝐵 𝐶 𝐷 

X 1 2 1 1 

 

For instance, when (1,2,1,1) is given 𝐴1; 𝐵2; 𝐶1; 𝐷1 are selected as primary defects in the 

geometric set up, then existing modelling information is incorporated to complete the whole 

design.  

 

 

 
 

 

In the end, by drawing one defect from each section, 16 combinations in terms of defects 

distribution are generated 

 

Combination 𝐴 𝐵 𝐶 𝐷 
No.1.  1 1 1 1 

No.2.  1 1 1 2 
No.3.  1 1 2 1 
No.4.  1 1 2 2 
No.5.  1 2 1 1 
No.6.  1 2 2 2 
No.7.  1 2 1 2 
No.8.  1 2 2 1 
No.9.  2 1 1 1 
No.10.  2 1 1 2 
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No.11.  2 1 2 1 
No.12.  2 1 2 2 
No.13.  2 2 1 1 

No.14.  2 2 2 2 
No.15.  2 2 1 2 
No.16.  2 2 2 1 

 

 

1.3. Basic Interacting Threats Study 

 

Stress corrosion cracking (SCC) in pipelines is the cracking of a metal or alloy by the combined 

action of stress and the environment, SCC is considered as the primary cause of failure, which is 

simulated and analyzed in MSU’s study. There are three criteria must be met for SCC formation 

(1) A threshold stress or stress intensity must be exceeded for SCC to occur; 

(2) The material must be susceptible to SCC;  

(3) Corrosive environments must be present in order to cause SCC in certain alloys [5, 6]. 

 

The presence of SCC cracks reduces the cross section of the metal capable of carrying a load. In 

COMSOL based simulation study we conducted so far, reduced cross section of the sample is 

independent of supporting structure nearby, which is different from real-life scenario and 

requires further studies. 

 

 
 

Figure 3: Modelling of interacting threats model under MFL inspection 

 

 

 
 

Figure 4: Measurement of Bx on defects of distance 15[4], center line plot is illustrated on the 

right side 

Distance between two defects is 

measured regarding edge to edge  
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Figure 5: Measurement of Bx on defects of distance 5[4], center line plot is illustrated on the 

right side 

 

 
 

Figure 6: Measurement of Bx on defects of distance 3 [4], center line plot is illustrated on the 

right side 

 

 
 

Figure 7:Measurement of Bx on defects of distance 1[4], center line plot is illustrated on the right 

side 

 

These figures above show the response of MFL inspection on a pair of threats. As we put them 

closer to each other, the effect of interacting threats could be observed, especially in the center 

line graph.  
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2. Progress on Task 4.1: Spatiotemporal interacting threat modeling by graphs 

 

In this quarter, we have evaluated our proposed thread segmentation method and spatiotemporal 

graph matching method on a simulated pipeline thread dataset. 

 

2.1. Evaluation of the Developed Segmentation Method 

 

In order to evaluate our segmentation method, we first utilize the simulation dataset that contains 

only single individual simulated threads. 

 

2.1.1. Approach Overview 

 

 
Figure 1 Whole pipeline of our proposed segmentation method 

 

We use the MFL simulation dataset as input, in which each data instance includes 5 kinds of 

information. The 5D raw data = (𝑃𝑥, 𝑃𝑦, 𝑀𝑥, 𝑀𝑦, 𝑀𝑧) where (𝑃𝑥 , 𝑃𝑦) is the central position of 

defected thread, (𝑀𝑥, 𝑀𝑦, 𝑀𝑧) is the  magnetic flux intensity in three directions. The position 

information is used for the spatiotemporal graph matching and provides the position of threads 

on pipeline. For the magnetic flux intensity, it is used for the segmentation which can be used to 

segment threads. In this project, we treat  𝑀𝑥, 𝑀𝑦, 𝑀𝑧 as three different types of sensing data, 
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which is collected from three different direction of MFL. For each type of data, such as  𝑀𝑥, we 

apply it into our Mask-RCNN segmentation architecture and the output includes three kinds of 

information including the mask of thread, the type of thread with the corresponding confidence 

and the boundary of the detected thread. The mask of thread can be used to accurately extract 

thread visual feature, the thread type with confidence can be used to provide attribute feature of 

threads and the boundary can be used to provide the central position of threads. 

 

 

2.1.2. Simulation Datasets 

 

As illustrated in Figure 2, our MFL simulation dataset includes three types of data. Given the 

visualization of simulation data, we can see that the size of magnetic flux intensity reflects the 

severity of threads. For a single thread, if we detect it from different direction, then the pattern of 

the intensity is different. However, for each type of data, all the patterns of thread with different 

sizes are the same. Thus, we can use our proposed segmentation method to detect the unique 

pattern in order to segment threads. 

 

   

𝑀𝑥                                                                           𝑀𝑦 

 

 

𝑀𝑧 

 

Figure 2 Example of simulation data in three direction 
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2.1.3. The Developed Segmentation Approach 

 

We use Mask-RCNN architecture to do the segmentation task. Mask-RCNN is basically an 

extension of Faster-RCNN which is widely used for object detection.  

 

As shown in Figure 3, Mask-RCNN includes two main stages. For stage 1, we first use ResNet 

101 to extract features from input images, the feature extraction process includes the encoder 

process (C2-C5) and decoder process (P5-P2) which are widely used in current CNN-based 

feature extraction. Given the features, we put them into region proposal network (RPN) which 

uses a CNN to generate the multiple Region of Interest (RoI) using a lightweight binary 

classifier. The classifier returns object/no-object scores. The last step in stage 1 is apply the 

output of RPN to RoI align network which outputs multiple bounding boxes rather than a single 

definite one and warp them into a fixed dimension. For stage 2, the wrapped features outputted 

from stage 1 are fed into fully connected layers which output our final results including the type 

of thread with confidence, bounding boxes and masks of threads. 

 

Figure 3 Mask-RCNN for image segmentation 
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2.1.4. Experimental Analysis 

 

 
Figure 4-a Segmentation of 𝑀𝑥 data type 

 

 
Figure 4-b Segmentation of 𝑀𝑧 data type 
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The final segmentation results are shown in Figure 4. Given the results we can see that the 

highlight area representing the intensity of magnetic flux is accurately detected. The central 

position of the bounding box of the thread can be used localize the position of the thread. Since 

the thread is very clear and unique in the raw image, the confidence of thread classification is 

100%. Since the boundary of the thread in raw image is not clear enough, the mask of the thread 

can only describe the basic boundary of the thread. We can also see from Figure 3 that  𝑀𝑦 data 

type has very weak intensity of magnetic flux, it is very hard to segment the threads from it. 

Thus, we only use the other two types of data (𝑀𝑥 , 𝑀𝑧) to segment threads. 

 

 

2.2. Evaluation of the Developed Spatiotemporal Graph Matching Method 

 

2.2.1. Approach Overview 

 

As shown in Figure 5, we propose a novel visual-spatial information preserving multi-order 

graph matching method for spatiotemporal matching of threads. The proposed approach takes the 

region of threads as input, which are localized given our proposed segmentation method. These 

regions are represented as graph nodes and visual features are extracted from the masks of 

regions to encode the visual appearances of the nodes. Then, our approach computes distances 

between two nodes and angles among three nodes to encode the second and third-order spatial 

relationships, respectively. Thus, the constructed representation integrates both visual and spatial 

information from an input image. Given graph representations of a pair of query and template 

images, our approach formulates spatiotemporal matching of threads as a multi-order graph 

matching problem, which computes a similarity score and node correspondences between the 

pair of graph representations that encode both visual and spatial cues from the query and 

template images. 
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Figure 5 Pipeline of multi-order graph matching method 

 

2.2.2. Simulated Multi-threads Datasets 

 

 
 

Figure 6 Example of multi-threads data 

 

Besides dataset with single thread, we also mimic the situation with multi-threads in order to 

evaluate our spatiotemporal graph matching method. Our designed multi-threads dataset is 

shown as Figure 6, we can see the topology of the threads can represent the spatial information 

of threads. The right image denotes the evolution of multi-threads from left image (not the real 

case, we manually generate Figure 6). Given our generated multi-threads data, we can see that 
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the data describe the evolution of threads, including growing up threads, newly appeared 

threads. 

 

2.2.3. The Developed Spatiotemporal Graph Matching Approach 

 

In this subtask, we complete the spatiotemporal matching algorithm to identify the corresponding 

interacting thread appearing in different times. We propose to use graph matching based method 

to implement this goal. Our designed spatiotemporal graph matching formulation is defined as 

following： 

 

𝐗∗ = arg max(𝐓 ⊗ 𝐗 ⊗ 𝐗 ⊗ 𝐗 + 𝐗𝐓𝐏𝐗 + 𝐁𝐓𝐗)   

 

The first term is to calculate the angular similarity between two graphs, the second term is used 

to compute the distance similarity between graphs and the last term is to calculate the similarity 

of defect appearances (like shape) between two graphs. The matrix X is the final corresponding 

matrix which encodes the correspondences of nodes in two graphs. The mathematical detail of 

this approach has been reported in previous reports. 

 

2.2.4. Experimental Analysis 

 

 
 

Figure 7 Spatiotemporal graph matching result 

 

As shown in Figure 7, we can see that our proposed spatiotemporal graph matching method can 

correctly identify the correspondences between two images recorded at different times. The left 

image in Figure 7 is recorded at inspection 1 and the right image is recorded at inspection 2 (after 

some time from the first inspection). Even though there exist newly appeared and growing up 

thread, our proposed method can still find the correct correspondences. 

 

 

2.3. Summary and Future Work 

 

In this report, we use the simulated pipeline threads dataset to evaluate our proposed image 

segmentation method and spatiotemporal graph matching method. The quantitative results shown 
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the effectiveness of our methods. Given the output from image segmentation, we can obtain the 

visual feature and position of threads and then we use these features to do graph matching in 

order to identify the spatiotemporal correspondences between different images (inspection) 

recorded at different times. Given the output of spatiotemporal matching of threads, we will 

implement the RNN-based prediction model in the next in order to prediction the remaining 

strength or failure pressure of pipeline. 
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